Serveur d'exploration sur le saule

Attention, ce site est en cours de développement !
Attention, site généré par des moyens informatiques à partir de corpus bruts.
Les informations ne sont donc pas validées.

Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores.

Identifieur interne : 000174 ( Main/Exploration ); précédent : 000173; suivant : 000175

Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores.

Auteurs : Jian-Yong Zeng [République populaire de Chine] ; De-Dong Wu [République populaire de Chine] ; Zhong-Bin Shi [République populaire de Chine] ; Jing Yang [République populaire de Chine] ; Guo-Cai Zhang [République populaire de Chine] ; Jie Zhang [République populaire de Chine]

Source :

RBID : pubmed:32323892

Descripteurs français

English descriptors

Abstract

The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.

DOI: 10.1002/arch.21676
PubMed: 32323892


Affiliations:


Links toward previous steps (curation, corpus...)


Le document en format XML

<record>
<TEI>
<teiHeader>
<fileDesc>
<titleStmt>
<title xml:lang="en">Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores.</title>
<author>
<name sortKey="Zeng, Jian Yong" sort="Zeng, Jian Yong" uniqKey="Zeng J" first="Jian-Yong" last="Zeng">Jian-Yong Zeng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, De Dong" sort="Wu, De Dong" uniqKey="Wu D" first="De-Dong" last="Wu">De-Dong Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Zhong Bin" sort="Shi, Zhong Bin" uniqKey="Shi Z" first="Zhong-Bin" last="Shi">Zhong-Bin Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jing" sort="Yang, Jing" uniqKey="Yang J" first="Jing" last="Yang">Jing Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Guo Cai" sort="Zhang, Guo Cai" uniqKey="Zhang G" first="Guo-Cai" last="Zhang">Guo-Cai Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</titleStmt>
<publicationStmt>
<idno type="wicri:source">PubMed</idno>
<date when="2020">2020</date>
<idno type="RBID">pubmed:32323892</idno>
<idno type="pmid">32323892</idno>
<idno type="doi">10.1002/arch.21676</idno>
<idno type="wicri:Area/Main/Corpus">000193</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Corpus" wicri:corpus="PubMed">000193</idno>
<idno type="wicri:Area/Main/Curation">000193</idno>
<idno type="wicri:explorRef" wicri:stream="Main" wicri:step="Curation">000193</idno>
<idno type="wicri:Area/Main/Exploration">000193</idno>
</publicationStmt>
<sourceDesc>
<biblStruct>
<analytic>
<title xml:lang="en">Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores.</title>
<author>
<name sortKey="Zeng, Jian Yong" sort="Zeng, Jian Yong" uniqKey="Zeng J" first="Jian-Yong" last="Zeng">Jian-Yong Zeng</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Wu, De Dong" sort="Wu, De Dong" uniqKey="Wu D" first="De-Dong" last="Wu">De-Dong Wu</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Shi, Zhong Bin" sort="Shi, Zhong Bin" uniqKey="Shi Z" first="Zhong-Bin" last="Shi">Zhong-Bin Shi</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Yang, Jing" sort="Yang, Jing" uniqKey="Yang J" first="Jing" last="Yang">Jing Yang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Guo Cai" sort="Zhang, Guo Cai" uniqKey="Zhang G" first="Guo-Cai" last="Zhang">Guo-Cai Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
<author>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
<affiliation wicri:level="1">
<nlm:affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.</nlm:affiliation>
<country xml:lang="fr">République populaire de Chine</country>
<wicri:regionArea>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin</wicri:regionArea>
<wicri:noRegion>Harbin</wicri:noRegion>
</affiliation>
</author>
</analytic>
<series>
<title level="j">Archives of insect biochemistry and physiology</title>
<idno type="eISSN">1520-6327</idno>
<imprint>
<date when="2020" type="published">2020</date>
</imprint>
</series>
</biblStruct>
</sourceDesc>
</fileDesc>
<profileDesc>
<textClass>
<keywords scheme="KwdEn" xml:lang="en">
<term>Aconitine (pharmacology)</term>
<term>Animals (MeSH)</term>
<term>Bacteria (classification)</term>
<term>Bacteria (genetics)</term>
<term>Gastrointestinal Microbiome (drug effects)</term>
<term>Larix (MeSH)</term>
<term>Larva (drug effects)</term>
<term>Larva (microbiology)</term>
<term>Moths (drug effects)</term>
<term>Moths (growth & development)</term>
<term>Moths (microbiology)</term>
<term>Nicotine (pharmacology)</term>
<term>Plant Leaves (MeSH)</term>
<term>RNA, Ribosomal, 16S (MeSH)</term>
<term>Salix (MeSH)</term>
</keywords>
<keywords scheme="KwdFr" xml:lang="fr">
<term>ARN ribosomique 16S (MeSH)</term>
<term>Aconitine (pharmacologie)</term>
<term>Animaux (MeSH)</term>
<term>Bactéries (classification)</term>
<term>Bactéries (génétique)</term>
<term>Feuilles de plante (MeSH)</term>
<term>Larix (MeSH)</term>
<term>Larve (effets des médicaments et des substances chimiques)</term>
<term>Larve (microbiologie)</term>
<term>Microbiome gastro-intestinal (effets des médicaments et des substances chimiques)</term>
<term>Nicotine (pharmacologie)</term>
<term>Papillons de nuit (croissance et développement)</term>
<term>Papillons de nuit (effets des médicaments et des substances chimiques)</term>
<term>Papillons de nuit (microbiologie)</term>
<term>Salix (MeSH)</term>
</keywords>
<keywords scheme="MESH" type="chemical" qualifier="pharmacology" xml:lang="en">
<term>Aconitine</term>
<term>Nicotine</term>
</keywords>
<keywords scheme="MESH" qualifier="classification" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="croissance et développement" xml:lang="fr">
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="drug effects" xml:lang="en">
<term>Gastrointestinal Microbiome</term>
<term>Larva</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="effets des médicaments et des substances chimiques" xml:lang="fr">
<term>Larve</term>
<term>Microbiome gastro-intestinal</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="genetics" xml:lang="en">
<term>Bacteria</term>
</keywords>
<keywords scheme="MESH" qualifier="growth & development" xml:lang="en">
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="génétique" xml:lang="fr">
<term>Bactéries</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiologie" xml:lang="fr">
<term>Larve</term>
<term>Papillons de nuit</term>
</keywords>
<keywords scheme="MESH" qualifier="microbiology" xml:lang="en">
<term>Larva</term>
<term>Moths</term>
</keywords>
<keywords scheme="MESH" qualifier="pharmacologie" xml:lang="fr">
<term>Aconitine</term>
<term>Bactéries</term>
<term>Nicotine</term>
</keywords>
<keywords scheme="MESH" xml:lang="en">
<term>Animals</term>
<term>Larix</term>
<term>Plant Leaves</term>
<term>RNA, Ribosomal, 16S</term>
<term>Salix</term>
</keywords>
<keywords scheme="MESH" xml:lang="fr">
<term>ARN ribosomique 16S</term>
<term>Animaux</term>
<term>Feuilles de plante</term>
<term>Larix</term>
<term>Salix</term>
</keywords>
</textClass>
</profileDesc>
</teiHeader>
<front>
<div type="abstract" xml:lang="en">The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.</div>
</front>
</TEI>
<pubmed>
<MedlineCitation Status="MEDLINE" Owner="NLM">
<PMID Version="1">32323892</PMID>
<DateCompleted>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateCompleted>
<DateRevised>
<Year>2020</Year>
<Month>07</Month>
<Day>10</Day>
</DateRevised>
<Article PubModel="Print-Electronic">
<Journal>
<ISSN IssnType="Electronic">1520-6327</ISSN>
<JournalIssue CitedMedium="Internet">
<Volume>104</Volume>
<Issue>3</Issue>
<PubDate>
<Year>2020</Year>
<Month>Jul</Month>
</PubDate>
</JournalIssue>
<Title>Archives of insect biochemistry and physiology</Title>
<ISOAbbreviation>Arch Insect Biochem Physiol</ISOAbbreviation>
</Journal>
<ArticleTitle>Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores.</ArticleTitle>
<Pagination>
<MedlinePgn>e21676</MedlinePgn>
</Pagination>
<ELocationID EIdType="doi" ValidYN="Y">10.1002/arch.21676</ELocationID>
<Abstract>
<AbstractText>The gut microbiota plays an important role in pheromone production, pesticide degradation, vitamin synthesis, and pathogen prevention in the host animal. Therefore, similar to gut morphology and digestive enzyme activity, the gut microbiota may also get altered under plant defensive compound-induced stress. To test this hypothesis, Dendrolimus superans larvae were fed either aconitine- or nicotine-treated fresh leaves of Larix gmelinii, and Lymantria dispar larvae were fed either aconitine- or nicotine-treated fresh leaves of Salix matsudana. Subsequently, the larvae were sampled 72hr after diet administration and DNA extracted from larval enteric canals were employed for gut microbial 16S ribosomal RNA gene sequencing (338 F and 806 R primers). The sequence analysis revealed that dietary nicotine and aconitine influenced the dominant bacteria in the larval gut and determined their abundance. Moreover, the effect of either aconitine or nicotine on D. superans and L. dispar larvae had a greater dependence on insect species than on secondary plant metabolites. These findings further our understanding of the interaction between herbivores and host plants and the coevolution of plants and insects.</AbstractText>
<CopyrightInformation>© 2020 Wiley Periodicals, Inc.</CopyrightInformation>
</Abstract>
<AuthorList CompleteYN="Y">
<Author ValidYN="Y">
<LastName>Zeng</LastName>
<ForeName>Jian-Yong</ForeName>
<Initials>JY</Initials>
<Identifier Source="ORCID">https://orcid.org/0000-0001-9419-0674</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Wu</LastName>
<ForeName>De-Dong</ForeName>
<Initials>DD</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Shi</LastName>
<ForeName>Zhong-Bin</ForeName>
<Initials>ZB</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Yang</LastName>
<ForeName>Jing</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Guo-Cai</ForeName>
<Initials>GC</Initials>
<Identifier Source="ORCID">http://orcid.org/0000-0002-4004-2032</Identifier>
<AffiliationInfo>
<Affiliation>Department of Forest Protection, School of Forestry, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
<Author ValidYN="Y">
<LastName>Zhang</LastName>
<ForeName>Jie</ForeName>
<Initials>J</Initials>
<AffiliationInfo>
<Affiliation>Key Laboratory of Saline-alkali Vegetation Ecology Restoration, Ministry of Education, College of Life Science, Northeast Forestry University, Harbin, China.</Affiliation>
</AffiliationInfo>
</Author>
</AuthorList>
<Language>eng</Language>
<GrantList CompleteYN="Y">
<Grant>
<GrantID>2572017AA18</GrantID>
<Agency>Fundamental Research Funds for Chinese Central Universities</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>[2019]HZT02 and</GrantID>
<Agency>Forestry Science and Technology Promotion Demonstration Fund Project of Chinese Central Finance</Agency>
<Country></Country>
</Grant>
<Grant>
<GrantID>JLT[2016] 13</GrantID>
<Agency>Forestry Science and Technology Promotion Demonstration Fund Project of Chinese Central Finance</Agency>
<Country></Country>
</Grant>
</GrantList>
<PublicationTypeList>
<PublicationType UI="D016428">Journal Article</PublicationType>
</PublicationTypeList>
<ArticleDate DateType="Electronic">
<Year>2020</Year>
<Month>04</Month>
<Day>23</Day>
</ArticleDate>
</Article>
<MedlineJournalInfo>
<Country>United States</Country>
<MedlineTA>Arch Insect Biochem Physiol</MedlineTA>
<NlmUniqueID>8501752</NlmUniqueID>
<ISSNLinking>0739-4462</ISSNLinking>
</MedlineJournalInfo>
<ChemicalList>
<Chemical>
<RegistryNumber>0</RegistryNumber>
<NameOfSubstance UI="D012336">RNA, Ribosomal, 16S</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>6M3C89ZY6R</RegistryNumber>
<NameOfSubstance UI="D009538">Nicotine</NameOfSubstance>
</Chemical>
<Chemical>
<RegistryNumber>X8YN71D5WC</RegistryNumber>
<NameOfSubstance UI="D000157">Aconitine</NameOfSubstance>
</Chemical>
</ChemicalList>
<CitationSubset>IM</CitationSubset>
<MeshHeadingList>
<MeshHeading>
<DescriptorName UI="D000157" MajorTopicYN="N">Aconitine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000818" MajorTopicYN="N">Animals</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D001419" MajorTopicYN="N">Bacteria</DescriptorName>
<QualifierName UI="Q000145" MajorTopicYN="N">classification</QualifierName>
<QualifierName UI="Q000235" MajorTopicYN="N">genetics</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D000069196" MajorTopicYN="N">Gastrointestinal Microbiome</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="Y">drug effects</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D028221" MajorTopicYN="N">Larix</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D007814" MajorTopicYN="N">Larva</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="N">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009036" MajorTopicYN="N">Moths</DescriptorName>
<QualifierName UI="Q000187" MajorTopicYN="N">drug effects</QualifierName>
<QualifierName UI="Q000254" MajorTopicYN="N">growth & development</QualifierName>
<QualifierName UI="Q000382" MajorTopicYN="Y">microbiology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D009538" MajorTopicYN="N">Nicotine</DescriptorName>
<QualifierName UI="Q000494" MajorTopicYN="Y">pharmacology</QualifierName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D018515" MajorTopicYN="N">Plant Leaves</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D012336" MajorTopicYN="N">RNA, Ribosomal, 16S</DescriptorName>
</MeshHeading>
<MeshHeading>
<DescriptorName UI="D032108" MajorTopicYN="N">Salix</DescriptorName>
</MeshHeading>
</MeshHeadingList>
<KeywordList Owner="NOTNLM">
<Keyword MajorTopicYN="N">aconitine</Keyword>
<Keyword MajorTopicYN="N">defensive plant secondary metabolite</Keyword>
<Keyword MajorTopicYN="N">gut microbiota</Keyword>
<Keyword MajorTopicYN="N">herbivores</Keyword>
<Keyword MajorTopicYN="N">lepidopteran</Keyword>
<Keyword MajorTopicYN="N">nicotine</Keyword>
</KeywordList>
</MedlineCitation>
<PubmedData>
<History>
<PubMedPubDate PubStatus="received">
<Year>2020</Year>
<Month>01</Month>
<Day>16</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="revised">
<Year>2020</Year>
<Month>03</Month>
<Day>12</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="accepted">
<Year>2020</Year>
<Month>03</Month>
<Day>26</Day>
</PubMedPubDate>
<PubMedPubDate PubStatus="pubmed">
<Year>2020</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="medline">
<Year>2020</Year>
<Month>7</Month>
<Day>11</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
<PubMedPubDate PubStatus="entrez">
<Year>2020</Year>
<Month>4</Month>
<Day>24</Day>
<Hour>6</Hour>
<Minute>0</Minute>
</PubMedPubDate>
</History>
<PublicationStatus>ppublish</PublicationStatus>
<ArticleIdList>
<ArticleId IdType="pubmed">32323892</ArticleId>
<ArticleId IdType="doi">10.1002/arch.21676</ArticleId>
</ArticleIdList>
<ReferenceList>
<Title>REFERENCES</Title>
<Reference>
<Citation>Ali, J. G., & Agrawal, A. A. (2012). Specialist versus generalist insect herbivores and plant defense. Trends in Plant Science, 17, 293-302.</Citation>
</Reference>
<Reference>
<Citation>Barik, J., & Wonnacott, S. (2009). Molecular and cellular mechanisms of action of nicotine in the CNS, Nicotine Psychopharmacology (pp. 173-207). Berlin Heidelberg: Springer.</Citation>
</Reference>
<Reference>
<Citation>Brattsten, L. B., Wilkinson, C. F., & Eisner, T. (1977). Herbivore-plant interactions: Mixed-function oxidases and secondary plant substances. Science, 196, 1349-1352.</Citation>
</Reference>
<Reference>
<Citation>Clissold, F., Tedder, B., Conigrave, A., & Simpson, S. (2010). The gastrointestinal tract as a nutrient-balancing organ. Proceedings Biological Sciences, 277, 1751-1759.</Citation>
</Reference>
<Reference>
<Citation>Cornell, H. V., & Hawkins, B. V. (2003). Herbivore responses to plant secondary compounds: a test of phytochemical coevolution theory. The American Naturalist, 161, 507-522.</Citation>
</Reference>
<Reference>
<Citation>Craig, T., & Itami, J. (2008). Evolution of preference and performance relationships. In K. J.Tilmon (Ed.), Specialization, speciation, and radiation: The evolutionary biology of herbivorous insects (1st ed., pp. 20-28). Oakland, CA: University of California Press.</Citation>
</Reference>
<Reference>
<Citation>Dermauw, W., Pym, A., Bass, C., vanLeeuwen, T., & Feyereisen, R. (2018). Does host plant adaptation lead to pesticide resistance in generalist herbivores?Current Opinion in Insect Science, 26, 25-33.</Citation>
</Reference>
<Reference>
<Citation>Friberg, M., Posledovich, D., & Wiklund, C. (2015). Decoupling of female host plant preference and offspring performance in relative specialist and generalist butterflies. Oecologia, 178, 1181-1192.</Citation>
</Reference>
<Reference>
<Citation>Gripenberg, S., Mayhew, P. J., Parnell, M., & Roslin, T. (2010). A meta-analysis of preference-performance relationships in phytophagous insects. Ecology Letters, 13, 383-393.</Citation>
</Reference>
<Reference>
<Citation>Hartl, M., Giri, A. P., Kaur, H., & Baldwin, I. T. (2011). Serine protease inhibitors specifically defend Solanum nigrum against generalist herbivores but do not influence plant growth and development. The Plant Cell, 22, 4158-4175.</Citation>
</Reference>
<Reference>
<Citation>Harvey, J. A., vanDam, N. M., Witjes, L. M. A., Solerro, R., & Gols, R. (2007). Effects of dietary nicotine on the development of an insect herbivore, its parasitoid and secondary hyperparasitoid over four trophic levels. Ecological Entomology, 32, 15-23.</Citation>
</Reference>
<Reference>
<Citation>Hawlena, D., Hughes, K. M., & Schmitz, O. J. (2011). Trophic trait plasticity in response to changes in resource availability and predation risk. Functional Ecology, 25, 1223-1231.</Citation>
</Reference>
<Reference>
<Citation>Heidel-Fischer, H. M., & Vogel, H. (2015). Molecular mechanisms of insect adaptation to plant secondary compounds. Current Opinion in Insect Science, 8, 8-14.</Citation>
</Reference>
<Reference>
<Citation>Hossain, M. M., Scott, I. M., Berruti, F., & Briens, C. (2018). A two-dimensional pyrolysis process to concentrate nicotine during tobacco leaf bio-oil production. Industrial Crops and Products, 124, 136-141.</Citation>
</Reference>
<Reference>
<Citation>Jamieson, M. A., & Deane Bowers, M. (2012). Plant-mediated effects of soil nitrogen enrichment on a chemically defended specialist herbivore, Calophasia lunula. Ecological Entomology, 37, 300-308.</Citation>
</Reference>
<Reference>
<Citation>Jia, Z., Xiao, X., Qian, Z., Mao, L., Miao, Y., & Xu, J. (2015). The placental microbiome varies in association with low birth weight in full-term neonates. Nutrients, 7, 6924-6937.</Citation>
</Reference>
<Reference>
<Citation>Kelly, C. A., & Bowers, M. D. (2016). Preference and performance of generalist and specialist herbivores on chemically defended host plants. Ecological Entomology, 41, 308-316.</Citation>
</Reference>
<Reference>
<Citation>Khan, M. M., Nawaz, M., Hua, H., Cai, W., & Zhao, J. (2018). Lethal and sublethal effects of emamectin benzoate on the rove beetle, Paederus fuscipes, a non-target predator of rice brown planthopper, Nilaparvata lugens. Ecotoxicology and Environmental Safety, 165, 19-24.</Citation>
</Reference>
<Reference>
<Citation>Li, X., Schuler, M., & Berenbaum, M. (2007). Molecular mechanisms of metabolic resistance to synthetic and natural xenobiotics. Annual Review of Entomology, 52, 231-253.</Citation>
</Reference>
<Reference>
<Citation>Ma, Q., Li, L., Li, D., Le, J., Lu, D., Qiao, F., … Du, Z. (2018). Dietary microencapsulated oil improves immune function and intestinal health in Nile tilapia fed with high-fat diet. Aquaculture, 496, 19-29.</Citation>
</Reference>
<Reference>
<Citation>Martinek, P., Kula, E., & Hedbávný, J. (2018). Reactions of Melolontha hippocastani adults to high manganese content in food. Ecotoxicology and Environmental Safety, 148, 37-43.</Citation>
</Reference>
<Reference>
<Citation>Mayhew, P. J. (1997). Adaptive patterns of host-plant selection by phytophagous insects. Oikos, 79, 417-428.</Citation>
</Reference>
<Reference>
<Citation>Min, F., Meng, W., Ji-Feng, W., Yan-Jiang, Q., & Zhao, W. (2007). Disruption of the intracellular Ca2+ homeostasis in the cardiac excitation-contraction coupling is a crucial mechanism of arrhythmic toxicity in aconitine-induced cardiomyocytes. Biochemical & Biophysical Research Communications, 354, 929-936.</Citation>
</Reference>
<Reference>
<Citation>Mooney, K. A., Pratt, R. T., & Singer, M. S. (2012). The tri-trophic interactions hypothesis: Interactive effects of host plant quality, diet breadth and natural enemies on herbivores. PLOS One, 7, e34403.</Citation>
</Reference>
<Reference>
<Citation>Mrazek, J., Strosova, L., Fliegerova, K., Kott, T., & Kopecny, J. (2008). Diversity of insect intestinal microflora. Folia Microbiologica, 53, 229-233.</Citation>
</Reference>
<Reference>
<Citation>Oliver, C. J., Softley, S., Williamson, S. M., Stevenson, P. C., & Wright, G. A. (2015). Pyrethroids and nectar toxins have subtle effects on the motor function, grooming and wing fanning behaviour of honeybees (Apis mellifera). PLOS One, 10, e0133733.</Citation>
</Reference>
<Reference>
<Citation>Rand, E. E. D., Smit, S., Beukes, M., Apostolides, Z., Pirk, C. W. W., & Nicolson, S. W. (2015). Detoxification mechanisms of honey bees (Apis mellifera) resulting in tolerance of dietary nicotine. Scientific Reports, 5, 11779.</Citation>
</Reference>
<Reference>
<Citation>Rausher, M. (1984). Tradeoffs in performance on different hosts: Evidence from within- and between-site variation in the beetle Deloyala guttata. Evolution, 38, 582-595.</Citation>
</Reference>
<Reference>
<Citation>Reeson, A., Jankovic, T., L Kasper, M., Rogers, S., & Austin, A. D. (2003). Application of 16S rDNA-DGGE to examine the microbial ecology associated with a social wasp Vespula germanica. Insect Molecular Biology, 12, 85-91.</Citation>
</Reference>
<Reference>
<Citation>Rheault, M. R., Plaumann, J. S., & O Donnell, M. J. (2006). Tetraethylammonium and nicotine transport by the Malpighian tubules of insects. Journal of Insect Physiology, 52, 487-498.</Citation>
</Reference>
<Reference>
<Citation>Sandén, H., Mayer, M., Stark, S., Sandén, T., Nilsson, L. O., Jepsen, J. U., … Rewald, B. (2019). Moth outbreaks reduce decomposition in subarctic forest soils. Ecosystems, 27, 505. https://doi.org/10.1007/s10021-019-00394-6</Citation>
</Reference>
<Reference>
<Citation>Schachtsiek, J., & Stehle, F. (2019). Nicotine-free, nontransgenic tobacco (Nicotiana tabacum L.) edited by CRISPR-Cas9. Plant Biotechnology Journal, 17, 2228-2230.</Citation>
</Reference>
<Reference>
<Citation>Steppuhn, A., & Baldwin, I. T. (2007). Resistance management in a native plant: Nicotine prevents herbivores from compensating for plant protease inhibitors. Ecology Letters, 10, 499-511.</Citation>
</Reference>
<Reference>
<Citation>Sun, G., Sun, H., Meng, X., Hu, J., Zhang, Q., Liu, B., … Sun, X. (2014). Aconitine-induced Ca2+ overload causes arrhythmia and triggers apoptosis through p38 MAPK signaling pathway in rats. Toxicology and Applied Pharmacology, 279, 8-22.</Citation>
</Reference>
<Reference>
<Citation>Thompson, J. (1988). Evolutionary ecology of the relationship between oviposition preference and performance of offspring in phytophagous insects. Entomologia Experimentalis Et Applicata, 47, 3-14.</Citation>
</Reference>
<Reference>
<Citation>Wada, K., Nihira, M., Hayakawa, H., Tomita, Y., Hayashida, M., & Ohno, Y. (2005). Effects of long-term administrations of aconitine on electrocardiogram and tissue concentrations of aconitine and its metabolites in mice. Forensic Science International, 148, 21-29.</Citation>
</Reference>
<Reference>
<Citation>Wetzel, W. C., & Thaler, J. S. (2016). Does plant trait diversity reduce the ability of herbivores to defend against predators? The plant variability-gut acclimation hypothesis. Current Opinion in Insect Science, 14, 25-31.</Citation>
</Reference>
<Reference>
<Citation>Yang, Y., & Joern, A. (1994). Gut size changes in relation to variable food quality and body size in grasshoppers. Functional Ecology, 8, 36-45.</Citation>
</Reference>
<Reference>
<Citation>Zeng, J. Y., Bi, B., Zhang, F. M., Cheng, G., Dien, V. T. M., & Zhang, G. C. (2019). Cu/ZnSOD always responded stronger and rapider than MnSOD in Lymantria dispar larvae under the avermectin stress. Pesticide Biochemistry and Physiology, 156, 72-79.</Citation>
</Reference>
<Reference>
<Citation>Zhang, S., Zhang, Z., Kong, X., & Wang, H. (2014). Molecular characterization and phylogenetic analysis of three odorant binding protein gene transcripts in Dendrolimus species (Lepidoptera: Lasiocampidae). Insect Science, 21, 597-608.</Citation>
</Reference>
<Reference>
<Citation>Ziani, P. R., Müller, T. E., Stefanello, F. V., Fontana, B. D., Duarte, T., Canzian, J., & Rosemberg, D. B. (2018). Nicotine increases fear responses and brain acetylcholinesterase activity in a context-dependent manner in zebrafish. Pharmacology Biochemistry and Behavior, 170, 36-43.</Citation>
</Reference>
</ReferenceList>
</PubmedData>
</pubmed>
<affiliations>
<list>
<country>
<li>République populaire de Chine</li>
</country>
</list>
<tree>
<country name="République populaire de Chine">
<noRegion>
<name sortKey="Zeng, Jian Yong" sort="Zeng, Jian Yong" uniqKey="Zeng J" first="Jian-Yong" last="Zeng">Jian-Yong Zeng</name>
</noRegion>
<name sortKey="Shi, Zhong Bin" sort="Shi, Zhong Bin" uniqKey="Shi Z" first="Zhong-Bin" last="Shi">Zhong-Bin Shi</name>
<name sortKey="Wu, De Dong" sort="Wu, De Dong" uniqKey="Wu D" first="De-Dong" last="Wu">De-Dong Wu</name>
<name sortKey="Yang, Jing" sort="Yang, Jing" uniqKey="Yang J" first="Jing" last="Yang">Jing Yang</name>
<name sortKey="Zhang, Guo Cai" sort="Zhang, Guo Cai" uniqKey="Zhang G" first="Guo-Cai" last="Zhang">Guo-Cai Zhang</name>
<name sortKey="Zhang, Jie" sort="Zhang, Jie" uniqKey="Zhang J" first="Jie" last="Zhang">Jie Zhang</name>
</country>
</tree>
</affiliations>
</record>

Pour manipuler ce document sous Unix (Dilib)

EXPLOR_STEP=$WICRI_ROOT/Bois/explor/WillowV1/Data/Main/Exploration
HfdSelect -h $EXPLOR_STEP/biblio.hfd -nk 000174 | SxmlIndent | more

Ou

HfdSelect -h $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd -nk 000174 | SxmlIndent | more

Pour mettre un lien sur cette page dans le réseau Wicri

{{Explor lien
   |wiki=    Bois
   |area=    WillowV1
   |flux=    Main
   |étape=   Exploration
   |type=    RBID
   |clé=     pubmed:32323892
   |texte=   Influence of dietary aconitine and nicotine on the gut microbiota of two lepidopteran herbivores.
}}

Pour générer des pages wiki

HfdIndexSelect -h $EXPLOR_AREA/Data/Main/Exploration/RBID.i   -Sk "pubmed:32323892" \
       | HfdSelect -Kh $EXPLOR_AREA/Data/Main/Exploration/biblio.hfd   \
       | NlmPubMed2Wicri -a WillowV1 

Wicri

This area was generated with Dilib version V0.6.37.
Data generation: Tue Nov 17 16:35:40 2020. Site generation: Tue Nov 17 16:39:32 2020